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Feynman's Ratchet and Pawl

While many papers in the last few years have dealt with various equations
euphemistically called "ratchets," the original Feyman two-temperature setup
has been left largely unchallenged. We present here a look at the details of how
this famous engine actually generates motion from a temperature difference.

Maxwell understood correctly that the Second Law is certain only in a
statistical sense. He attempted to show this(1) by the device now called
"Maxwell demon:" a being of molecular size who would sort fast molecules
from slow molecu-les, thus generating a thermal gradient out of an initially
isothermal condition. Unfortunately, Maxwell did not realize that the
demon would itself be subject to fluctuations of the same type and size as
those it was trying to take advantage of. By the 20s and 30s people like
Smoluchovsky(2) and Szilard(3) showed that once a system is in thermal
contact with a reservoir it does not matter whether it is large or small at
the molecular scale: the operations of the demon will always be subject to
the Second Law. They started a long tradition(4, 5, 6) of the Maxwell demon
as a means to probe the underlying nature of statistical mechanics at the
small scale, with the Second Law no longer into question.

But then the nature of the game changed dramatically, and not from
within physics. Advances in molecular biology made it clear that cells are
populated with molecular machinery operating near the limits of thermal
energies, and that these machinery do indeed perform the kinds of tasks
usually entrusted to Maxwell demons. We are, in a sense, made of demons.
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We propose here a retreat to the purely conceptual realm, to consider
Feynman's Ratchet and Pawl mechanism, just for the fun of understanding
some details of irreversible systems subject to multiple temperatures. The
picture that emerges is substantially more complicated, but also more rich,
than Feynman's analysis outlined: a story of probability currents circulating
in large eddies, shedding small amounts of probability on their borders to
make the engine work. We'll build from discussions of how to generate
motion from thermal gradients, as outlined by Landauer,(7) Buttiker(8) and
van Kampen,(9) and from detailed analysis of the intrinsic losses incurred
when touching two thermal baths simultaneously, as outlined by Parrondo
and Espanol,(10) and by Sekimoto.(11)

We'll proceed as follows. We'll set up our equations modeling the
ratchet. Then we'll argue a boundary layer approximation (BLA) that
collapses to a case studied by Buttiker, and show how this picture for-
malizes Feynman's discussion. We'll then do numerical simulation, and
show that the boundary layer approximation is incorrect because it
assumes a single layer: the motion of the system is organized in an
elongated roll, with an updraft bottom layer and a downdraft upper layer.
While the net difference between top and bottom currents that provides the
interwell motion is reasonably described by the BLA, neither the large-
scale picture nor the resulting losses are. Furthermore, upon reversal of the
temperature difference, a new mechanism arises that never operates in the
vicinity of the boundary at all. We'll wrap up by analyzing these features
in analytical detail for a linear system.

1. RATCHET AND PAWL

We will not here review Feynman's setup, lest we might, by doing so,
deprive the reader from a perfect excuse to read once more Chapter 46 of
the Lectures on Physics.(5)

We'll work in the overdamped regime, since the underdamped system
gives essentially similar answers at a much higher cost, and underdamped
systems are physically much more difficult to realize. We'll call x the degree
of freedom associated to the ratchet-axle-vane system (p.b.c, since it's an
angle) and y the position of the pawl; the shape of the ratchet's teeth enters
as a boundary condition (See Fig. 1). Then,
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We'll call the quantity in parentheses J, the probability current.
When T1 = T2 (and L = 0) the Boltzmann distribution is the sole

stable solution of this system, which is thus in thermodynamic equilibrium.
When T1 = T2 (still L = 0) something funny happens. The Boltzmann

form P oc exp( – U(y)/kT2) satisfies the Fokker-Planck equation; because
J=0, it would seem to satisfy the boundary conditions trivially. This hap-
pens because the (impenetrable) boundary conditions are actually more

We'll usually be thinking of V(x, y) = U(y) + Lx, where U is the potential
energy of the pawl, which presses it upon the teeth, while L is the load on
the ratchet (the weight of the flea); we'll use L = 0 from here on. (We'll also
have to complicate this form due to problems with the boundary condi-
tions.) The associated Fokker-Planck system for steady state is

Fig. 1. Sketch of the configuration space of the engine. The vertical coordinate is the posi-
tion of the pawl, while the horizontal coordinate is the position of the ratchet (modulo a
single tooth). The curve represents the boundary of the ratchet; since the pawl cannot
penetrate it, the region below is forbidden to the system. The ratchet and pawl degrees of
freedom are in contact with different heat reservoirs; hence diffusion due to temperature is
elliptic.

where Tij is the temperature matrix, which we'll assume to be of the form



involved and slightly horrible: we explicitly have to set P = 0 outside the
ratchet, which leads to J acquiring a Dirac S precisely on the boundary.
The prefactor of this 3 vanishes in detailed balance, but it does not for
T1=T2.

A slightly more convenient way to see this is as follows. Let's remove
the boundary condition altogether, and declare the potential to smoothly
diverge at the ratchet surface: this is, after all, the physical situation leading
to the boundary condition in its limit. Then, whenever the shape of the
ratchet's teeth is sloped with respect to the horizontal or vertical, we get a
coupling between the x and y degrees of freedom in the potential. The
current J cannot be zero then because J = — WP- VP = 0 would imply
that

2. EFFICIENCY

Recently, Parrondo and Espanol(10) have noted that the axle joining
vane and ratchet establishes communication between the two reservoirs.
They develop a particularly clear example: instead of the ratchet-and-pawl
system on the right reservoir, they just have another vane; in this case the
axle serves as a thermal conduit between the two reservoirs, and heat flows
between them, marring the efficiency of the device. We'll assume henceforth
that we have taken account of this issue: i.e., that the temperature T1 has
already been properly renormalized so as to take into account this effect.
Furthermore, we'll take these energy losses for granted and look for brand
new ones. It is not clear that this is 100% proper: we should really consider
the three dimensional system of vane/ratchet/pawl; however, this seems at
the time the most innocuous of our approximations. (Also, the limit of
an infinitely stiff axle cannot be taken within the overdamped regime,
see Appendix B.) Sekimoto(11) has computed numerical solutions to the
Fokker-Planck equation for a ratchet-pawl ratchet-pawl system, and found
that for the particular cases chosen the efficiency is substantially below the
Carnot efficiency argued by Feynman.

618 Magnasco and Stolovitzky

So we are requiring that both V 1n P and T · V ln P be gradients of a
scalar field, which is not possible unless T1 = T2 or P is of the form
Q(x) R{y) (i.e., x and y are independent degrees of freedom.) This also
highlights a technical problem with this system: though we get elliptic
operators, they are not conformal, and hence much of the artillery for
solving Laplace-like systems won't work here.



The core of Feynman's argument is that there will be a value of the
weight of the flea (the load) for which the average speed will be zero (called
the "stall load"). He then argues that this is a "quasistatic" case on which
maximal efficiency will be attained. The central point brought forth by
Parrondo and Espanol is that the ratchet-and-pawl is never quasistatic,
because (unlike the Carnot engine) it's never in contact with just one single
bath: it's always in contact with both.

It's simple to show in closed form that the ratchet is not quasistatic at
stall load. In fact, it's shown by Eq. (1): if the two temperatures are dif-
ferent, and the ratchet's teeth are not exactly horizontal or exactly vertical,
detailed balance is structurally impossible; this is true at any load, and in
particular at stall load. So there are currents at stall load, and with them
a direction in time and irreversibility, since currents are not invariant under
time reversal. With this irreversibility comes, obviously, a finite amount of
entropy produced per unit of time; but since the work done per unit of time
against the load is zero, the efficiency, rather than being maximal, is exactly
zero, and the ratchet achieves maximal efficiency only at a finite speed.

However, such an argument is correct but hardly illuminating. We will
try now to describe in which fashion the ratchet-and-pawl operates, giving
a detailed dynamical picture of how it "leaks" energy between the baths.
In doing so, we will learn a few things about nonequilibrium systems.

3. BOUNDARY LAYER APPROXIMATION

If both temperatures are small enough that the system is confined to
a narrow probability band in the vicinity of the ratchet's boundary, we
could think of the system as essentially one dimensional. In this case, we
can note that along this probability strip, the "effective" temperature is a
function of the local slope of the boundary: Teff=t- T t, where t is the
vector tangent to the boundary. (This is the same as computing the tem-
perature by intersecting the ellipsoid at some slope.)

This type of system, and the conditions on the space-varying tem-
perature and potential to obtain motion have been extensively studied by
Landauer,(7) Buttiker,(8) and van Kampen.(9) In order to obtain motion, we
have to satisfy

where the integral is taken along one loop of the periodic coordinate x. In
our particular realization we would have an extra twist: the potential enters
the equations through h(x), the shape of the ratchet: V(x, y) -> V{x, h(x)),
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and so does the temperature: Teff=(T1 + (h')2 T2)/(1 +(h')2), so all the
conditions expressed in [8] can now refer exclusively to the function h(x)
describing the shape of the ratchet's teeth.
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which, for V(x,y)= V(y) are obviously satisfied as soon as T1=T2 for
"generic" (i.e., asymmetric) shapes of h. Thus, the core of the BLA is the
statement that we have to measure barrier heights in units of the
appropriate local temperature on the path leading to the barrier, which
means that the same mountain might look different in height if looked at
from different angles. This is what Feynman does, de facto, as he computes
the rates for different processes: he uses the temperature corresponding to
where the system was before the transition. We should remark that if we
take this strictly, the local temperature on the soft flank of the ratchet is
not T1, since the soft flank is required to have a finite slope and hence
cannot be horizontal.

However, we'll see below that this approximation, while giving a very
clear geometric picture, is not correct; this is so because the system does
not collapse properly onto a boundary layer of the form assumed. Even
if it did, it would be rather naive to expect the boundary layer to be
homogeneous in thickness, which would immediately add "entropic" terms
(having to do with the logarithm of this thickness) to the game. These
terms cannot be computed from within this approximation and hence the
full problem has to be approached.

4. NUMERICAL SIMULATION

It is by now time to resort to numerical simulation, if only to see
whether our intuitive understanding of the engine is correct. We'll only
describe the situation in which the ratchet is unloaded.

We numerically solve the Langevin equations above using the following
potential:

(i.e., gravitational action on the pawl with constant force Fp, and a
repulsive interaction with the ratchet's boundary h{x). We use



So: £ is a sort of "penetration depth," the height above the ratchet at which
the repulsion becomes 1 energy unit; 8 controls the smoothness of the
ratchet's boundary, which becomes discontinuous as S -> 0, when h(x) -»
arctan(tan(x)). The period of the ratchet is n, and the height of the
ratchet's teeth would be n as d -* 0. We use S = 0.1, e = 0.5 and Fp = 5/n, so
the barrier height is approximately 5 units. The repulsive interaction fails,
in a sense, to fully protect the numerics, because it only operates in the
vertical direction; the repulsive layer becomes quite thin on the steepest
flank of the ratchet (x = n/2). This limits us as to how high the temperature
can become without forcing use of prohibitively small timesteps, which
already have to be much smaller than in comparable ODEs since the noise
terms are O(y/At).

In its broad strokes, the system works as depicted by Feynman. When
T1>T2, the ratchet jumps forward, while when T1, < T2 it jumps back-
wards. When T1, as T2 we are near the detailed balance case, and the steady
drift in the motion of the ratchet is drowned by diffusion, impeding us to
establish numerically what the speed is. However, the broad outlines of the
probability current circulation can be easily established. See Fig. 2. When
T1 = T2 we have a detailed balance state with no currents: just a peak of
the probability distribution at the minimum of the potential.

When T2<T1, we get an elongated roll of high probability density
along the soft flank of the ratchet. The process determining the thickness
of the roll and the dynamics of the system can best be visualized in the case
T2 = 0, i.e., no vertical fluctuations. Imagine a series of fluctuations pushing
the state towards the right. Then the state will collide against the soft flank
of the ratchet, and will be pushed up, tightly against the boundary of the
ratchet. Potential energy of the pawl will be gained in the process. Rarely,
such a fluctuation would be able to push the pawl over the edge of the
tooth into the next period; but most usually it won't, so let's imagine the
latter. Then further imagine that a succession of leftward fluctuations takes
place. The state will immediately detach from the boundary of the ratchet,
moving left, while the pawl falls down deterministically. This process takes
place away from the boundary of the ratchet for some short while, because
while the horizontal displacement is O(y/2t), the vertical displacement is
deterministic, and hence is only 0{At): the typical outline of this motion
is a parabola. While falling deterministically in the pawl coordinate, the
potential energy gained before is released into the lower temperature bath.
This parabolic motion starts horizontally left, and hence detaches; but
becomes steeper and steeper, and eventually will intersect the boundary
again, hence reattaching to the updraft boundary layer. The envelope of
all such parabolas (weighted according to their proper probability) deter-
mines the thickness of the downdraft boundary layer, and this is given as
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Fig. 2. The three combinations of temperatures: T 1 « T 2 , T1 = T2 and T1 » T2. The lower
panels show the numerically computed probability density P(x, y), the top panels show
sketches of the arrangement of probability currents. Probability density is depicted in
logarithmic scale grayscales, with saturated black corresponding to Pmax = maxx, y P(x, y) (in
each panel), while white corresponds to P<e~8Pmax. Hence middle gray is P « e - 4 P m a x .

a competition between diffusive and deterministic terms. The local maxi-
mum of the probability distribution lies between the (attached) updraft
layer and the (detached) downdraft layer.

So, here's where Feynman's analysis erred, and it's clear that his intui-
tion was betrayed by a quintessentially equilibrium notion, i.e., that the
path A-* B coincides with B-* A, which is generically never true for
strongly nonequilibrium systems. The ratchet attempts to climb a tooth
and fails, and it does not come back down the same way it went up.
Kinetic energy is taken from the T1 bath in order to climb the soft flank
of the ratchet. Feynman only takes this into account when the attempt is
successful and the system advances one notch: this energy is released into
the T2 bath. But for every successful advance, there are myriad unsuccessfu
ones, and on each and every one the potential energy gained during the
attempt is similarly released into the T2 bath and not to the T1 bath as he
assumed, because during descent ratchet is detached from pawl. This is also
the root of the problem with the BLA: the system climbs the soft flank
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tightly pressed against the ratchet, but comes down detached from this
boundary. The motion of the system cannot truly be described by a single
one-dimensional layer. The rate for the successful attempts is approximated
appropriately by the BLA, because it only depends on the net current on
the roll. But because the dissipation due to currents is of the order O(J2/P),
by cancelling two large opposing currents into a small net current, the BLA
hides a central mechanism of dissipation. All the time, between successful
jumps, the system is losing power, because it's transmitting energy from the
high temperature bath to the low temperature bath through terms
analogous to those of Parrondo and Espanol; but here the axle is no longer
the culprit, it's the coupling between ratchet and pawl itself: the ratchet
kicks the pawl up, and the pawl dissipates this energy through viscosity.
Because energy is taken from the high-temperature bath and dissipated
into the low temperature one, entropy is being generated.

When T1 « T2 the mechanism changes dramatically in shape, and the
BLA is no longer correct even pictorially. If T1 -> 0, then the particle will
slide back to the bottom of the tooth, and then jump vertically from there,
forming a small vertical "geyser" of probability and currents. The width of
this geyser is controlled by T1, so if T1 is small enough the probability that
the left side of the geyser will collide with the top of the ratchet becomes
zero, whenever the ratchet shape is not perfectly sharp (i.e., the maximum
and the minimum do not coincide). (If the ratchet has an overhang, the
geyser becomes a familiar "histeresis loop.") Thus, when operating in
"reverse," there is a finite value of T1 at which backwards motion is maxi-
mized, an effect that was not mentioned in the Lectures. We can note that
this mechanism somewhat resembles the "ratchet" described in ref. 12,
while the former one somewhat resembles that of ref. 13.

5. EFFICIENCY AGAIN

It should be clear by now why Feynman's argument for the efficiency
of the ratchet approaching Carnot's is incorrect. For one, thinking back
into the problem, there are three energy scales to contend with: kT1, kT2,
and Q, the barrier height (energy required to lift the pawl so the ratchet
can advance). It seems rather inconceivable that Q could dropout of the
efficiency formula in order to give the Carnot efficiency ATjT, except
perhaps in a special limit, Q» T or viceversa. We'll examine what the
efficiency is for both of these limits.

The Parrondo-Espanol analysis has shown a loss of efficiency due to
the axle coupling. We've shown another loss, of a similar nature, due to the
ratchet-pawl coupling. Even then, it would be interesting to know the
relative magnitude of the effects we're discussing here.
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In the low T regime the probability distribution clusters at the bottom
of the ratchet. The jumps that provide work become rarer at the rate of
exp(Q/kTeff), an essential singularity in T; however, the energy losses due
to the various couplings vanish only algebraically (see next section). Thus,
the efficiency drops to zero. In the high T regime, jumps are frequent.
Unfortunately, they are frequent either way. As T—>co the system is
dominated by random motion, with the drift being small by comparison.
If the pawl's excursion in the vertical direction is not somehow limited,
most of the motion of the system is carried out entirely outside the ratchet
region. Even if it is confined by some form of restraint, most of the motion
is dominated by violent collisions between ratchet and pawl (lossy), and by
the thermal conductivity of the axle (also lossy). In this regime, the work
done can be seen to diminish algebraically or stay constant at best, while
the heat transfer increases as T. Hence the efficiency drops to zero once
more, but this time algebraically.

Thus the highest efficiency of the ratchet is achieved when TxQ, the
one regime that's hardest to analyze. We hence turn our back on the dif-
ficulties of this problem, and establish the extent of conductive losses in the
simplest case: the bottom of a quadratic well.

6. TWO-DIMENSIONAL LINEAR SYSTEM

Consider two 1-D Brownian particles with coordinates x and y and
equal mass m, contained in separate reservoirs at temperatures Tx and Ty.
The particles, each of which experiences its own harmonic potential with
spring constant k, interact through a spring (constant R) that connects
them.

The Langevin equations for this system are
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where kB is Boltzmann constant, y is the friction coefficient (assumed to be
the same for both reservoirs), and £1 and £2 are uncorrelated white noises.

The stationary Fokker-Planck equation corresponding to these
Langevin equations is
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where f={fx, fy) = {~kx + R(y-x), -ky + R(x- y)) is the force, f is an
diagonal matrix with diagonal entries Tx and Ty, and P(x, y) is the
stationary distribution. Solving Eq. (5) (see Appendix A), we find that

where T=(Tx + Ty)/2, 8 = {Tx-Ty)/2T, a. = (R/(k + R))2 - 1 and N is a
normalization constant. Clearly 0 < S < 1, and - 1 < a < 0.

The streamlines of the probability current coincide with the improba-
bility curves (see Appendix A) which are determined by P(x, y) = const.
The latter is the equation of an ellipse rotated an angle p, where

A few particular cases are d = 0, for which p = n/4 (as it should be in
the isothermal case), and R -> oo, for which p = n/4. Also it is clear that

The ratio of the square of the axes of this ellipse is

6.1. Is an Experimental Realization Possible?

This system could be experimentally envisioned in the following way.
Take to beads of diameter of approximately 1 um. Trap them with laser
tweezers, separated at a distance of the order of the 10 to 15 um. Tether
the beads at the extremes of a A phage DNA molecule. The typical spring
constant at the end of the well formed by the tweezers is

where typically Vb = 150 kB T and r « 350 nm. The "dynamic" spring con-
stant of the DNA is, according to the formula of Marko and Siggia(14)



where L = 16,500 nm is the length of the DNA, A = 50 nm is its persistence
length, and d is the actual distance between extremes of the DNA molecule.
Doing the numbers one obtains that at d/L = 0.92, the ratio of ktweezer/kDNA

x 1. Thus the effects of the interaction can be felt strongly, and we can
probe an interesting regime.

Let us compute the temperature difference necessary for the non-
isothermal effects to be seen. If k = R, the square of the ratio of the smaller
to larger axis is 1/3 in the isothermal case. If the two beads are located in
heated up and coned down stripes, the temperature difference necessary to
make the aforementioned ratio differ in a 20 % is of about 50°. This dif-
ference amounts to a thermal gradient of 5,000°/nm, enough to set huge
thermal currents of water in motion, and mask the effect that was purported
to be seen.

This problem becomes larger when the characteristic size of the physical
realization gets smaller, and hence multiple temperature "Maxwell demons"
become not just untenable, but plain ridiculous when considering the nano-
meter-scale machinery of molecular biology. However, this does not mean
that the study of multiple temperatures is irrelevant for biology at large.
There are many, many instances in biological systems where noise
amplitudes depend on content The evolution of genomes is one such case:
mutations of genetic material can be understood as a diffusion process in
sequence space, subject to selection from a "fitness landscape;" but the
amount of mutations can vary both in time and along the genome.(15)

When a neuron relays a message to another neuron, the message is
inevitably afflicted by noise; however, this noise depends on what the
message is.(16)

For a general discussion of the thermal bath kinetics in this kind of models,
see Sekimoto.(11) Likewise dQy/dt = R(yx), and thus dQx/dt = -dQy/dt,
which is nothing but the conservation of energy.
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6.2. Entropy Production

The heat given by the thermal bath at Tx that is not dissipated in that
same bath will flow through the spring R to the other reservoir at tem-
perature Ty. The amount of heat per unit time extracted from the reservoir
x is



7. OUTLOOK

The ratchet-and-pawl engine has provided physicists with untold
amounts of excitement and insight for many years, from Smoluchowski,(2)

through Brillouin's analysis of electrical diodes,(4) to the vivid and fascinating
exposition by Feynman.(5) That we have found some fault with Feynman's
analysis of the efficiency is of no real importance: this engine has given us,
and will continue to give, excitement and insight into the realm of non-
equilibrium systems. We've contributed a small grain to its illustrious
history: an image of large-scale rolls of circulating probability attached to
its boundary.

As with any other system with a "hard" breaking of detailed balance,
systems with multiple temperatures along different degrees of freedom are,
prima facie, hard to analyze. However, there does not seem to be anything
within the theory that actually makes them intractable: they are modeled,
after all, by elliptic linear PDEs, and hence rate rather modestly on the
intractability scale. We expect that, as more systems are brought to
scrutiny by emerging applications, c our arsenal of analytical tools will
rapidly enlarge.

APPENDIX A

It can be surmised from the Langevin equations (which are linear, and
forced with Gaussian noise), that the solution to Eq. (5) will be a bivariate
Gaussian:
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The heat Qx is interchanged at temperature Tx, while the heat Qy does
it at Ty. Thus there is an entropy production of

We compute <xy> in Appendix A, from where the entropy produc-
tion turns out to be

As expected, the entropy production vanishes both when R = 0 and when
(5 = 0. Otherwise it is positive.
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where N is a normalization constant and A, B and C are constants to be
determined from the Fokker-Planck equation. If we write the probability
current as J = F<v | x, y}, then the FP equation becomes

where <v |x , y) = [2(2TxA -k-R) +y(R-BTX), x(R-BTy) + y(2CTy

-k-R)].
The LHS in Eq. (5) with P taken from (14) is a 2nd degree polyno-

mial, and the RHS is a constant. In order for the equation to be satisfied
both members have to be zero. Setting to 0 the coefficients in x2, xy and
y2 in the LHS sets 3 equations with 3 the unknowns A, B, and C, which
has a unique solution

where

Note that TX=T{\ +S) and Ty= T(1 -6). With these constants, the RHS
in (5) is V- <v \x, y) =0. The streamlines of the probability currents coin-
cide with the isoprobability curves. This is so because J oc (v|x, y) is
orthogonal to VP [see Eq. (15)]. Therefore, the streamlines have equations
P(x, y) = const.
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APPENDIX B

To compute (xy) we multiply the first Langevin Eqn. by y and
taking averages we get

To compute <xy> and <y2> (and for the same token <X2>), we observe
that a bivariate Gaussian distribution (with null marginal means) has the
form

where p2 = (xy)2/((x2y(y2)). Identifying this P with the previous P
written in terms of the physical parameters of the problem, we obtain

Using these relations we obtain that

From Eq. (11) and (27) we get that Qx = R2kB/((k + R)2my) AT.
Thus, the heat conductivity of the system of springs is R2kB/(k + R) 2my.
A similar result was found by Sekimoto(11) in the case k = 0.

APPENDIX C

In this Appendix we generalize the calculation of Section 6, and com-
pute the n-dimensional stationary distribution of a system of harmonic
oscillators coupled to thermal baths at different temperatures. Consider the
vector field fj = AijXj (A is a negative-definite symmetric matrix, being the
Hessian of the confining potential; index summation notation is assumed).



630 Magnasco and Stolovitzky

With a temperature tensor Tij (assumed symmetric but not necessarily
diagonal) and a multivariate normal ansatz for P oc txp(BijXiXj/2) (with
C=B - 1 being minus the covariance matrix), the stationary Fokker-
Planck equation reads

(The Boltzmann constant kB is absorbed in the matrix T in this notation.)
Since diP = PBikxk,

So we get two distinct conditions:

and

The first condition can be written as V-J/P = 0, and is the multidimen-
sional equivalent to the incompressibility of the conditional velocity field
V • < v | x, y) =0 discussed in Appendix A. The last equation has also been
discussed in Appendix A. It can be written as (J/P) · VP = 0. and has a
simple interpretation: the probability currents coincide with the isoproba-
bility curves. Notice that the last equation does not imply that whatever is
within the square brackets should vanish: it's multiplied by the symmetric
tensor xixk, so only its symmetric part vanishes. Recasting this into
standard matrix notation, tr(A – TB) = 0 and the slightly more difficult

In order for this system to be well defined, the first (trace) condition should
be linearly dependent on the last ones, otherwise the system would be over-
determined. Leftmultiplying by B-1 and taking the trace, tr(B-1AB + A) =
2 tr(A) = tr(2TB) which proves the trace equation to be linearly dependent.
Now rightmultiplying by C = B-1 again we get the equation in a shape
that allows direct solution.

The equation to be solved is



i.e., a "symmetrized" version of AC=T. We have to solve for C = B-1

which will be of order O( T/A). This looks like a problem whose solution
should be very well known and go by a specific name, but we have been
unable to find any references to it.

Recall that A is symmetric. Thus its eigenvalues Aj are real, and its
eigenvectors aj define an orthonormal coordinate system. In this coor-
dinate system (where A is of coursediagonal), the ikth component of the
previous equation can be readily rewritten as

REFERENCES
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(where the convention of no summation over parenthesized indices is
assumed) which admits a straight forward solution for C in the eigensystem
of A:

or in matrix notation

Notice that now, if [A,T]= 0, TJk is diagonal, and so C reduces to T/A.
Thus the stationary probability distribution becomes P(x) oc exp(xt · C-1 · x).
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